Therapeutic Effect of Dried Fig, Date and Olive Oil on Immune System in Rats

Hoda S. Ibrahim, **Naeem M. Rabeh**, **Hanan M. El-Ghandour**, and **Shafika M. Sabry**

Abstract

The aim of the present work was to investigate the effect of dried fig, date and olive oil supplementation on hematological parameters and immune functions in rats. Fifty four male albino rats weighing 120 ± 5 g were used in this study. The first main group (n=6) was fed on the basal diet (-ve control). The second main group (n = 48) was subcutaneously injected with a single dose of Sheep red blood cell (SRBC) to induce immune suppuration. Then rats were divided into 8 subgroups (6 rats each). Subgroup 1 was fed on basal diet (+ve control). Subgroups from 2 - 4 were fed on the basal diet and supplemented with olive oil 5%, dried fig 10%, and date 10%, respectively. Subgroups from 5 - 7 were fed on basal diets supplemented with olive oil 5%, dried fig 10%, and date 10% respectively. Subgroup 8 was fed on basal diet and supplemented with a mixture of olive oil 5%, dried fig 10%, and date 10% for 8 weeks. Chemical composition results of dried fig, date fruit and olive oil recorded high content of vitamins, minerals, calories and carbohydrates. Olive oil show high content of calories, fats, omega-6
and vitamins but low iron. Dried fig, date and olive oil revealed the presence of total phenolic and flavonoid. Results indicated that rats groups fed on a mixture of the three tested samples had increased immune suppurations significantly (P<0.05). The mean value of IgM and IgG are 81.4 and 749.0 g/L, respectively for the rats fed on mixture of the tested materials increased, compared to the positive control group. Hematological parameters were significantly increased (P<0.05) for the groups given dried fig, olive oil and date fruit separately or in combination. However, white blood cells count was significantly decreased. Moreover, significant increase in body weight gain, feed intake and feed efficiency ratio of the tested groups compared to the positive control group. Also, results show significant increase in the levels of white blood cells and hemoglobin compared to the negative control group. It could be concluded that, dried figs, dates fruit and olive oil stimulates the immune system of rats with induced immune deficiency.

Introduction

The human immune system is represented by a complex network of organs, tissues, cells and molecules that evolved primarily to protect the host against infections. However, the immune system influences much more than host defense: it has crucial roles in immune surveillance of malignancies, it inflicts damage in the context of autoimmune as well as autoinflammatory diseases and it affects host metabolism and aging (*Mihai et al.*, 2016).
The innate immune system provides an early first line of defense against invading pathogens. The cells involved are neutrophils, monocytes, macrophages and dendritic cells, which all interact with the adaptive immune system. These cells develop and mature during fetal life, but at different times, and the function of all components of innate immunity is weak in newborns compared with the later life (Abbas, 2005).

Epidemiological studies supported by experimental data from both animals and humans, have made a significant contribution to increasing knowledge of the relationship between diet and the immune system, considering nutrient intake as a critical determinant of immunocompetence (Klasing and Leshchinsky, 2000). This association was confirmed after the recognition of long chain n-3 polyunsaturated fatty acids (PUFA) as nutrients that participate in the regulation of immune system functions (Calder, 2003).

Dates fruits have high composition of carbohydrates, minerals, dietary fibre, vitamins, fatty acids and amino acid gives a unique value in human nutrition (Al-Shahib and Marshall, 2003). Date (Phoenix dactylifera) natural products and their constituents are good approach in the control of infection as they are inexpensive, effective without side effects, and its constituents play a significant effect in the prevention or treatment of bacterial diseases (Bokhari and Perveen, 2012).

Date fruits play a significant role as anti-inflammatory and recent report on the Ajwa dates showed that ethyl acetate, methanolic, and water extracts of Ajwa dates inhibit the lipid peroxidation cyclooxygenase enzymes COX-1 and COX2 (Zhang et al., 2013). A study in animal model showed that date has potential
protective effect via modulation of cytokines expressions and reducing foot swelling and plasma fibrinogen (Mohamed and Al-Okbi, 2004 and Elberry et al., 2011).

Dietary polyphenols have been shown to inhibit low density lipoprotein (LDL) oxidation, scavenge superoxide and other reactive oxygen species (ROS), increase plasma antioxidant capacity (Visioli et al., 2015). It also affects human platelet function in vitro and in vivo (Ostertag et al., 2010). Platelets play a central role in the formation of plaques within blood vessels, contributing to early inflammatory events; so, the observed cardiovascular benefits attributed to olive oil may be linked to the anti-platelet activity of olive oil polyphenols and thus to the suppression of platelet activation (De Roos et al., 2011).

Virgin olive oil (Oleaeuropaea) is rich in unsaponifiable minor components such as sterols, tocopherols and polyphenols. The polyphenols are natural antioxidants that not only contribute to the stability of the oil, but also have anti-inflammatory and anti-atherosclerotic properties (Gonzalez-Santiago et al., 2006 and Ostertag et al., 2010).

Olive oil is mainly composed of oleic acid, plus additional different chemical components such as sterols, alcohols, antioxidants, and other fatty acids (apart from oleic acid) of minor relevance. An interesting study examined the biological constituents of olive oil responsible for the modulation of the immune functions and revealed that the immunosuppressive effects attributed to olive oil are likely due to oleic acid rather than to other minor components of this fat (Jeffery et al., 1997 and Puertollano et al., 2007).
Fig (*Ficus carica* L.) a deciduous tree belonging to the Moraceae family, is one of the oldest cultivated fruit trees and an important crop worldwide for both fresh and dry consumption. The most of the world's fig production is provided by Mediterranean countries (*Gozlekci, 2010*). The dried fig contains phenolic substances which contribute to its quality. The phenolic compounds of dried figs can produce a significant increase of the antioxidant capacity of human plasma and can protect plasma lipoproteins from oxidation (*Vinson, 1999*).

Date (*Phoenix dactylifera* L.) fruit is good source of high nutritional value food. Indeed it is rich in carbohydrates, dietary fibers, proteins, minerals and vitamin B complex, such as thiamine, riboflavin, niacin, pantothenic, pyridoxine, and folate (*Chao and Krueger, 2007; Al-Siddiq et al., 2013; Al-Harrasi et al., 2014; Eoin, 2016 and Al-Alawi et al., 2017*). Therefore, this study was conducted to investigate the effect of dried fig, date and olive oil supplementation on hematological parameters and immune functions in rats.

Materials and Methods

Materials:

Casein, vitamins, minerals and cellulose were obtained from Elgomhoria Company, Cairo, Egypt. Dried Fig (*Ficus carica* L.), olive oil (*Olea europaea*) and date (*Phoenix dactylifera*) were obtained from Agriculture Research Center, Giza, Egypt.

Rats: Adults male albino rats (*n = 54*) of Sprague-Dawley strain weighing (120 ± 5 g) were purchased from Helwan
Hoda S.Ibrahim, Naeem M.Rabeh, Hanan M. El-Ghandour and Shafika M.Sabry

Farm of Experimental Animals, Helwan, Egypt. Sheep red blood cells (SRBC) was obtained from VACSERA, Dokki, Egypt.

Chemicals: Kits for biochemical analysis were purchased from Gama Trade Company for Pharmaceutical and Chemicals, Dokki, Egypt.

Methods:

Chemical composition: chemical composition of dried fig, date and olive oil were determined according to the method described in the A.O.A.C.(2005).

Experimental Design: Fifty four male rats were housed in well aerated cages under hygienic conditions and fed on basal diet for one week for adaptation. The basal diet was consisted of 14% protein (casein), 4% corn oil, 0.25% choline, 1% vitamin mixture, 3.5% mineral mixture, 10% sucrose, 5% cellulose, 0.3% DL-methionine and the remainder was starch. The diet was formulated according to Reeves et al., 1993. After this week rats were divided into two main groups as follows:-

The first main group (n=6) was fed on the basal diet during the experimental period and kept as a negative control group. The second main group (n = 48) was subcutaneously injected with a single dose of SRBC to induced immune suppression (Suke et al., 2006). Some random blood samples were taken from the eye of injected rats to insure of immune suppression. Then rats were divided into 8 subgroups (6 rats each) as follows: Subgroup (1) was fed on basal diet as positive control group. Subgroups 2-4 were fed on basal diet and supplemented with olive oil (5%), dried fig (10%) and date
Subgroups 5-7 were fed on basal diet and supplemented with a combination of olive oil 5% and dried fig, (olive oil 5% and date 10%) and finally, (dried fig 10% and date 10%), respectively. Subgroup 8 was fed on basal diet supplemented with a mixture of olive oil 5%, dried fig 10%, and date 10%.

During the experimental period, water and diet were introduced under hygienic conditions. At the end of the feeding period (8 weeks), rats were fasted overnight before sacrificing and two blood samples were collected, one sample was centrifuged to obtain serum for biochemical analysis while the second sample (whole blood) was used to determine the hematological parameters. Spleen was removed from each rat for histopathological examination.

Biological Evaluation:

Biological evaluations were carried out by determination of feed intake (FI). Overall feed efficiency ratio (FER) (weight gained in grams per grams of feed consumed), body weight gain (BWG%) and organs relative weight were determined according to Chapman *et al.*, (1959).

\[
\text{BWG}\% = \frac{\text{Final body weight} - \text{Initial body weight}}{\text{Initial body weight}} \times 100
\]

\[
\text{FER} = \frac{\text{Gain weight (g)}}{\text{Food consumed (g)}}
\]

Biochemical analysis:

Immunoglobulin M (IgM) and immunoglobulin G (IgG) were measured according to *Ziva and Pannall,* (1984). Red blood cell (RBC) count, haemoglobin concentration (Hb), hematocrit (HCT), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration...
(MCHC), platelets (PLT), white blood cell (WBC), eosinophils (EO), monocyte (MONO), lymphocyte (LYMPH) and neutrophils (NEUT) were estimated, using standard haematological technique as described by Ochei and Kolharktar, (2008).

Statistical Analysis: The obtained results were analyzed according to SPSS program, version (18). ANOVA test was used to compare results among groups and P<0.05 was considered to be significant (SPSS, 1986).

Results

The chemical composition of dried fig and date as shown in Table (1) indicated that, dried fig and date are high in (calories, carbohydrates, total fiber, vitamin K, vitamin B complex, zinc, potassium, calcium, magnesium and phosphorus) but low in fats and vitamin E concentration. Results revealed that, olive oil is high in calories, total fat (monounsaturated fat, polyunsaturated fat, omega-3 fatty acid, omega-6 fatty acid), vitamin K and iron, but low in vitamin B complex and minerals.

Total phenols and total flavonoids of dried figs, date and olive oil were recorded in Table (2). They contain total phenols, in the following concentrations (36 mg GAE, 231 mg GAE and 142.21 mg GAE) respectively, and total flavonoids in the following concentrations (192 mg CE, 66 mg CE and 125.64 mg CE). Dried fig have the highest concentration of total flavonoids however, olive oil have the highest content of total phenols.
As shown in Table (3), data indicated that body weight gain% for the positive control group with induced immune deficiency was significantly decreased (P<0.05), compared to the negative control group (-11.6 ±3.6 VS 25.8 ± 2.6 %), respectively. The body weight gain% increased significantly (P<0.05) in all groups which were supplemented with olive oil, dried figs and dates fruit separately or in combination compared to the positive control group. The highest body weight gain % was observed in group of rats fed on dried figs at level 10% with a mean value of 31.0 ± 3.4%. The results indicated that feed intake was increased in groups fed on the tested materials at the different supplemented level compared with the positive control group. Feed efficiency ratio was significantly (P<0.05) decreased in the positive control group compared to the negative control one with a mean value 0.028 ±0.53 VS 0.041±0.22, respectively. There were no significant changes in feed efficiency ratio among groups fed on all tested materials, compared to the negative control group.

Table (4) shows the effect of olive oil, dried figs and date fruit separately or in combination on red blood cell parameters in rats with induced immune deficiency. The positive control group had significant decrease (P<0.05) in the mean value of RBC, Hb and HCT, compared to the healthy control group. On the other hand, rats fed diet supplemented with olive oil, dried figs and dates fruit significantly increased (P<0.05) the mean levels of RBC parameters compared to the positive control group. There are no significant differences in the level of RBC between rats groups fed on diet supplemented with different mixture of fig, date and olive oil. Also the highest red blood cell value was observed in rats group fed on dried figs at level 10% with a mean value 15.5 ± 2.1 (×10^6/ul).
Table (5) shows the effect of olive oil, dried fig and date separately or in combination on MCH, MCHC and PLT in rats with induced immune suppression. The positive control group had significant reduction (P<0.05) in the mean value of MCH, MCHC and platelet, compared to the healthy control group. On the other hand, supplementation with olive oil, dried figs and dates significantly increased (P<0.05) the mean value of MCH, MCHC and platelet compared to positive control group. Also the highest MCH, MCHC and PLT values are observed in group fed on dried figs at level 10%.

Results illustrated in Table (6) revealed the effect of olive oil, dried figs and dates fruit separately or as a mixture on total leucocytic count in rats with induced immune suppression. Rats fed on different levels of olive oil, dried figs and dates fruit had significant decreased in the mean value of WBC, EO, MONO, LYMPH and neutrophils compared to the positive control group. On the other hand, the positive control group had significant increase (P<0.05) in the mean value of WBC compared with the control negative group. Also, the positive control group had significant decrease (P<0.05) in the mean value of eosinophil, monocyte, lymphocyte and neutrophil, compared with the control negative group and the groups fed on supplemented diet.

Results recorded in Table (7) show the effect of olive oil, dried fig and date at different levels on serum immunoglobulins (IgM and IgG) of rats with induced immune deficiency. The injection with SRBC to induce immune deficiency in rats caused significant decrease in the mean value of IgM and IgG compared to the control negative group. Diets Supplemented with a mixture of the tested materials
showed significant increased (P<0.05) in the mean levels of IgM and IgG, respectively compared to the control positive group. Also the highest IgM and IgG are observed in group which fed on the mixture of tested samples with a mean value of 749.0 ±16.4 (g/L), 81.4 ±1.8 (g/L).

Histopathological examination of spleen:

Microscopically, spleen of rats from the negative group revealed no histopathological changes with normal lymphoid follicle (Fig. 1). However, spleen of rats from the positive group showed slight lymphocytic necrosis and depletion (Fig. 2). Meanwhile, spleen of rats fed on olive oil 5%, dried fig 10%, respectively revealed no histopathological changes (Figs. 3 & 4). On the other hand, spleen of rats fed on date at the level of 10%, revealed lymphocytic necrosis and depletion (Fig. 5). Examined sections from groups fed on the tested samples as a mixture, revealed no histopathological changes (Figs. 6 & 7). Moreover, spleen of rats which fed on dried fig 10% and date 10% and the mixture of olive oil 5%, date 10% and dried fig 10%, revealed no histopathological changes (Figs. 8 & 9).

Discussion

The immune system has evolved to protect the host from a universe of pathogenic microbes that are themselves constantly evolving. The immune system also helps the host eliminate toxic or allergenic substances that enter through mucosal surfaces. Central to the immune system’s ability to mobilize a response to an invading pathogen, toxin or allergen is its ability to distinguish self from non-self. The host uses both innate and adaptive mechanisms to detect and eliminate pathogenic microbes. Both of these mechanisms include self-nonself discrimination (David, 2010). Medicinal plants and
their constituents play a vital and significant action to neutralize or inhibit the free radical by the use of antioxidant activity (Arshad et al., 2014).

Dates have the highest concentration of polyphenols among the dried fruits. The antioxidant activity of phenolic compounds is a result of their redox properties, which can play an important role in absorbing and neutralizing free radicals (Vinson et al., 2005). Another finding in the support of dates as antioxidant reported that dates are a good source of antioxidants due to the carotenoids and phenolics with quantity 3942 mg/100 g and antioxidants constituents 80400 μmol/100 g (Bilgari et al., 2008). A study examined the antioxidant activities in different type of dates such as Fard, Khasab and Khalas and showed that Khalas is measured to be best quality, had higher antioxidant activity, total carotenoids, and bound phenolic acids than other types of dates (Al-Farsi et al., 2005).

Results indicated that rats with induced immune deficiency had decreased red blood cell parameters and increased WBC, compared to negative control group. These results are in agreement with Sadi et al., (2016) who reported that pectin extract of date significantly elevated the RBC (+ 5.5%, p<0.01), Hb (+14.35%, p<0.001), Ht (+11.85%, p<0.001), MCH (+11.29%, p<0.001) when compared with lead acetate treated group. No alteration in MCHC, WBC decreased significantly (-72.09%, p<0.001) and insignificantly increased in MCV when treated with pectin of date.

The therapeutic effects of phoenix dactylifera are attributed to its polyphenolic content (Al-Farsi and Lee, 2008).
Plant polyphenols are naturally occurring compounds found in fruit, vegetables, and in products such as fruit- and vegetable-derived sugars, juices, and oils. They are secondary metabolites in the plants they are produced from, serving as a defense system to ultraviolet light or pathogens (Pandey and Rizvi, 2009).

Date exhibits potent anti-oxidative properties both in vitro and in vivo. This allows the fruit to prevent depletion of intrinsic protection from oxidative cell damage and assist these defense systems in reducing cell damage. Macroscopically, this mechanism may be relevant to the prevention of various adverse drug events common to chemotherapy including hepatotoxicity, nephrotoxicity, gastrotoxicity, and peripheral neuropathy (Bibi et al., 2015). The importance of dates has been documented in the Qur’an in Surah Maryam (Arshad et al., 2014).

Orally administered to healthy albino rats, the extract of Ficus Carica significantly increased the hemoglobin concentration, hematocrit and red blood cell count. However, it also decreased the total white blood cell count, as well as the percentage of neutrophils, when compared with the control group (Nebedum, et al., 2009). These results are agreement with our results in this work. The Ficus Carica extracts could also have insecticide effect (Kim et al., 2005), immunostimulant properties (Patil et al., 2010), and even antiscalent (Abdel-Gaber et al., 2008).

Data in this work show that feed intake in positive control group which induced with immune deficiency decreased significantly compared with negative control group. Results show also increase in feed intake in groups fed on dried fig separately or as a mixture compared to the positive control group. But this increase not
significantly with negative group. These results in agreement with the findings by Anderson and Woodend, (2003), who mentioned that high glycemic carbohydrate are associated with a reduction in appetite and food intake in the short time, whereas the satiating effects of lower glycemic carbohydrate appear to be delayed.

Results in our study showed that body weight gain decreased significantly in positive group which induced immune suppression compared to negative group which fed only on basal diet. These results in agreement with the findings by Al-Siddiq et al., 2013, who reported that groups which treated with different levels of figs (5, 10, 20) and leaves (4, 6%) were have increase values of body weight gain compared to positive control group. Hassanen and Ahmed, 2015 found that body weight gain was significantly increased in rats feed on ration mixed with fish oil and virgin olive oil and mixtures when compared with positive group, these findings correlated with those obtained by (Kasdallah-Grissa et al., 2008 and Hamadani et al., 2011) while the group injected diethylnitrosamines showed significantly decreased in the body weight gain as compared to negative group (Metwally et al., 2011).

Our result revealed that no significant change in FER in negative control group and groups which supplemented with different levels of tested samples, but significant increase compared to positive group. These results in agreement with the findings by Al-Siddiq et al., (2013), who reported that diet supplanted with 5 and 10% date induced significant increase (P<0.05) in F.E.R. compared to positive group (diabetic rats).
Olive oil provides protection through multiple mechanisms. Because oxidation of proteins, DNA and lipids contribute to cancer development, the antioxidants in olive oil may also offer chemoprotective properties (Visioli, 2004). Research on olive oil and its components has also focused on their capacity to inhibit proliferation and promote apoptosis in several tumor-cell lines by diverse mechanisms.

Recent studies have clearly shown the important impact of polyunsaturated fatty acids (PUFAs) on human health in the prevention of, cardiovascular disease, coronary heart disease and cancer, inflammatory, thrombotic and autoimmune disease; hypertension; diabetes type two, renal diseases; and rheumatoid arthritis, ulcerative colitis, and Crohn’s disease. Their non-substitutable roles in many biological pathways are crucial (De Caterina et al., 2000 and Abedi and Sahari, 2014).

The virgin olive oil (VOO) oxidation process can be delayed by antioxidants. Polyphenols work as primary antioxidants to inhibit oxidation in VOO acting as chain breakers by a donation of a radical hydrogen to alkylperoxyl radicals generated by the lipid oxidation and formation of stable derivatives during this reaction (Servili et al., 2009). Phenolic compounds (oleuropein, protocatechuic acid) of virgin olive oil have also been shown to inhibit macrophage-mediated LDL oxidation (Masella et al., 2004 and Gorzynik-Debicka et al., 2018).

Oleuropein, hydroxytyrosol, and their derivatives are polyphenolic compounds that are abundant in olive oil. They are powerful antioxidants displaying anticancer, anti-angiogenic and anti-inflammatory properties. They are also found to modulate the human immune system, affecting proliferation of the white blood cells and the production of cytokines (Gorzynik-Debicka et al., 2018).
Evidence has shown that regular consumption of foods rich in phenolic compounds may decrease the risk for the development of chronic diseases (Tresserra-Rimbau et al., 2014 and Tresserra-Rimbau et al., 2016), mainly due to their ability to modulate low-grade inflammation (Tangney and Rasmussen, 2013). The mechanisms by which these compounds may exert an anti-inflammatory effect, specifically on cardiovascular diseases, involves: antioxidant activity; modification of the signaling cascade and transcription network (blocking the signaling and expression of nuclear factor kappa B); decrease of the adhesion of immune cells (T lymphocytes and monocytes) to the endothelium; and improvement of endothelial dysfunction. Due to the complex chemical composition of the oil, particularly the EVOO (Tangney and Rasmussen, 2013).

For histopathological examination of spleen our result in agreement with Khalil et al., (2013) who reported that his to pathological alterations in the spleen architecture, as manifested by severe depletion and necrosis of lymphocyte in white pulp for positive group which exposed to chromium (K$_2$Cr$_2$O$_7$).

Altogether these results suggest toxic alterations within the spleen induced by K$_2$Cr$_2$O$_7$, indicating that the immune system may be hampered and so interfering in the body mechanisms of defense. The administration of EVOO ameliorate the immunosuppressive effect of K$_2$Cr$_2$O$_7$ through the protection against the lymphoid depletion in rats given combination of K$_2$Cr$_2$O$_7$ and EVOO, where the spleen showed hyperplasia of some white pulp and others showed depletion.

Finally, it could be concluded that, dried figs, dates fruit and olive oil stimulates the immune system of rats with induced immune deficiency.
Table (1): The crude chemical composition of dried fig, date and olive oil.

<table>
<thead>
<tr>
<th>Nutrients (100g)</th>
<th>Dried fig</th>
<th>Date</th>
<th>Olive oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calories (k.cal)</td>
<td>249</td>
<td>284</td>
<td>884</td>
</tr>
<tr>
<td>Proteins (g)</td>
<td>3.3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Fats (g)</td>
<td>0.9</td>
<td>2.9</td>
<td>98.9</td>
</tr>
<tr>
<td>Saturated (g)</td>
<td>-</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Monounsaturated (g)</td>
<td>-</td>
<td>-</td>
<td>73</td>
</tr>
<tr>
<td>Polyunsaturated (g)</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>omega-3 (g)</td>
<td>-</td>
<td>-</td>
<td>0.8</td>
</tr>
<tr>
<td>omega-6 (g)</td>
<td>-</td>
<td>-</td>
<td>9.8</td>
</tr>
<tr>
<td>Carb. (g)</td>
<td>63.9</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>Total fiber (g)</td>
<td>9.8</td>
<td>5.2</td>
<td>0</td>
</tr>
<tr>
<td>Vitamin K (µg)</td>
<td>15.6</td>
<td>2.7</td>
<td>60</td>
</tr>
<tr>
<td>Vitamin B6 (mg)</td>
<td>0.1</td>
<td>0.25</td>
<td>-</td>
</tr>
<tr>
<td>Thiamine (mg)</td>
<td>0.1</td>
<td>0.05</td>
<td>-</td>
</tr>
<tr>
<td>Riboflavin (mg)</td>
<td>0.1</td>
<td>0.06</td>
<td>-</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>-</td>
<td>1.16</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin A (IU)</td>
<td>-</td>
<td>149</td>
<td>-</td>
</tr>
<tr>
<td>Vitamin E (mg)</td>
<td>-</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Zn (mg)</td>
<td>0.5</td>
<td>0.44</td>
<td>-</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>2</td>
<td>-</td>
<td>0.56</td>
</tr>
<tr>
<td>Manganese (mg)</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>680</td>
<td>696</td>
<td>-</td>
</tr>
<tr>
<td>Magnesium (mg)</td>
<td>68</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>Calcium (mg)</td>
<td>162</td>
<td>64</td>
<td>-</td>
</tr>
<tr>
<td>Phosphorus (mg)</td>
<td>67</td>
<td>62</td>
<td>-</td>
</tr>
<tr>
<td>Copper (mg)</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table (2): Total phenols and total flavonoids of dried fig, date and olive oil

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sample (100 g)</th>
<th>Dried fig</th>
<th>Date</th>
<th>Olive oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenols</td>
<td></td>
<td>36 mg GAE</td>
<td>231 mg GAE</td>
<td>142.21 mg GAE</td>
</tr>
<tr>
<td>Total flavonoids</td>
<td></td>
<td>192 mg CE</td>
<td>66 mg CE</td>
<td>125.64 mg CE</td>
</tr>
</tbody>
</table>

GAE: Gallic acid equivalent, CE: Catchin equivalent.

Table (3): Effect of olive oil, dried fig and date on body weight, feed intake and feed efficiency ratio in rats with suppression of immune system.

<table>
<thead>
<tr>
<th>Parameters Groups</th>
<th>Initial Body Weight(g)</th>
<th>Final Body Weight(g)</th>
<th>BWG (%)</th>
<th>Feed intake (g/day/rat)</th>
<th>FER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-Ve)</td>
<td>120.6 ± 1.9 a</td>
<td>151.6 ± 1.7 ab</td>
<td>25.8 ± 2.6 ab</td>
<td>12.5</td>
<td>0.041 ± 0.2 a</td>
</tr>
<tr>
<td>Control (+Ve)</td>
<td>120.2 ± 2.3 a</td>
<td>106.2 ± 5.0 c</td>
<td>-11.6 ± 3.6 a</td>
<td>11.0</td>
<td>0.046 ± 0.2 a</td>
</tr>
<tr>
<td>Olive Oil (5%)</td>
<td>118.2 ± 0.9 a</td>
<td>149.2 ± 3.6 ab</td>
<td>26.1 ± 2.3 ab</td>
<td>11.0</td>
<td>-0.028 ± 0.5 b</td>
</tr>
<tr>
<td>Fig (10%)</td>
<td>119.4 ± 2.2 a</td>
<td>156.2 ± 2.6 a</td>
<td>31.0 ± 3.4 a</td>
<td>11.8</td>
<td>0.051 ± 0.3 a</td>
</tr>
<tr>
<td>Date (10%)</td>
<td>120.0 ± 1.3 a</td>
<td>155.4 ± 6.4 ab</td>
<td>29.3 ± 4.1 ab</td>
<td>11.7</td>
<td>0.050 ± 0.4 a</td>
</tr>
<tr>
<td>Fig (10%) + Olive Oil (5%)</td>
<td>119.0 ± 1.3 a</td>
<td>143.4 ± 1.1 b</td>
<td>20.5 ± 0.9 b</td>
<td>11.2</td>
<td>0.036 ± 0.1 a</td>
</tr>
<tr>
<td>Date (10%) + Olive Oil (5%)</td>
<td>119.2 ± 1.4 a</td>
<td>151.0 ± 2.7 ab</td>
<td>26.6 ± 1.7 ab</td>
<td>11.4</td>
<td>0.046 ± 0.1 a</td>
</tr>
<tr>
<td>Fig (10%) + Date (10%)</td>
<td>121.8 ± 1.1 a</td>
<td>146.6 ± 5.2 ab</td>
<td>20.4 ± 4.7 b</td>
<td>11.3</td>
<td>0.036 ± 0.4 a</td>
</tr>
<tr>
<td>Mixture (Fig10% + Date 10% + Olive Oil 5%)</td>
<td>118.0±1.2 a</td>
<td>153.0±1.9 ab</td>
<td>29.7±2.2 ab</td>
<td>11.7</td>
<td>0.049 ± 0.2 a</td>
</tr>
</tbody>
</table>

Values are expressed as means ±SE.
Values at the same column with different superscript letters are significant differ at P<0.05.
Table (4): Effect of olive oil, dried fig and date on red blood cell parameters in rats with suppression of immune system.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>RBC ($\times\ 10^6$/ul)</th>
<th>Hb (g/dl)</th>
<th>HCT (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-Ve)</td>
<td></td>
<td>13.6±0.4<sup>ab</sup></td>
<td>47.9±1.1<sup>a</sup></td>
<td>64.2±2.5<sup>a</sup></td>
</tr>
<tr>
<td>Control (+Ve)</td>
<td></td>
<td>8.8±0.1<sup>c</sup></td>
<td>30.0±0.7<sup>d</sup></td>
<td>32.2±1.4<sup>d</sup></td>
</tr>
<tr>
<td>Olive Oil (5%)</td>
<td></td>
<td>11.5±0.6<sup>b</sup></td>
<td>37.8±0.3<sup>cd</sup></td>
<td>52.0±2.5<sup>c</sup></td>
</tr>
<tr>
<td>Fig (10%)</td>
<td></td>
<td>15.5±2.1<sup>a</sup></td>
<td>40.4±1.4<sup>cd</sup></td>
<td>53.6±1.2<sup>c</sup></td>
</tr>
<tr>
<td>Date (10%)</td>
<td></td>
<td>13.1±0.2<sup>ab</sup></td>
<td>40.2±0.7<sup>cd</sup></td>
<td>52.3±1.0<sup>c</sup></td>
</tr>
<tr>
<td>Fig (10%)+Olive Oil (5%)</td>
<td></td>
<td>12.3±0.9<sup>b</sup></td>
<td>41.8±1.7<sup>bc</sup></td>
<td>54.6±0.9<sup>bc</sup></td>
</tr>
<tr>
<td>Date (10%)+Olive Oil (5%)</td>
<td></td>
<td>13.5±0.2<sup>ab</sup></td>
<td>40.1±1.5<sup>cd</sup></td>
<td>51.3±0.1<sup>c</sup></td>
</tr>
<tr>
<td>Fig (10%)+Date (10%)</td>
<td></td>
<td>12.4±0.5<sup>b</sup></td>
<td>37.7±0.6<sup>d</sup></td>
<td>50.5±1.7<sup>c</sup></td>
</tr>
<tr>
<td>Mixture (Fig10%+Date10% + Olive Oil 5%)</td>
<td></td>
<td>13.6±0.05<sup>ab</sup></td>
<td>44.6±0.3<sup>ab</sup></td>
<td>59.4±0.7<sup>ab</sup></td>
</tr>
</tbody>
</table>

Values are expressed as means ±SE.

Values at the same column with different superscript letters are significant differ at P<0.05. RBC = Red Blood Cell, Hb = Hemoglobin, HCT = Hematocrit.
Table (5): Effect of olive oil, dried fig and date on MCH, MCHC and PLT in rats with suppression of immune system.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>MCH (g/dl)</th>
<th>MCHC (g/dl)</th>
<th>PLT (× 10^3/ul)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-Ve)</td>
<td></td>
<td>21.6±0.9a</td>
<td>38.5±1.3a</td>
<td>1173.5±0.5a</td>
</tr>
<tr>
<td>Control (+Ve)</td>
<td></td>
<td>13.1±0.2e</td>
<td>25.2±2.2d</td>
<td>750.0±4.0f</td>
</tr>
<tr>
<td>Olive Oil (5%)</td>
<td></td>
<td>16.5±0.5d</td>
<td>30.5±1.4c</td>
<td>850.0±11.0e</td>
</tr>
<tr>
<td>Fig (10%)</td>
<td></td>
<td>17.8±0.2cd</td>
<td>31.4±1.8c</td>
<td>928.5±2.5c</td>
</tr>
<tr>
<td>Date (10%)</td>
<td></td>
<td>16.7±0.1d</td>
<td>32.5±0.1c</td>
<td>872.5±3.5d</td>
</tr>
<tr>
<td>Fig (10%)+Olive Oil (5%)</td>
<td></td>
<td>18.8±0.9bc</td>
<td>35.3±2.3abc</td>
<td>949.0±1.0b</td>
</tr>
<tr>
<td>Date (10%)+Olive Oil(5%)</td>
<td></td>
<td>17.3±0.3cd</td>
<td>33.8±0.6abc</td>
<td>940.0±4.0bc</td>
</tr>
<tr>
<td>Fig(10%)+Date(10%)</td>
<td></td>
<td>17.6±0.3cd</td>
<td>33.0±0.9bc</td>
<td>940.0±2.0bc</td>
</tr>
<tr>
<td>Mixture(Fig10%+ Date10% +Olive Oil5%)</td>
<td></td>
<td>19.8±0.1b</td>
<td>37.9±0.9ab</td>
<td>941.0±1.5bc</td>
</tr>
</tbody>
</table>

Values are expressed as means ±SE.
Values at the same column with different superscript letters are significant differ at \(P<0.05 \).

MCH = Mean Corpuscular Hemoglobin, MCHC= Mean Corpuscular Hemoglobin Concentration, PLT=Platelets.
Table (6): Effect of olive oil, dried fig and date on total leucocytic count in rats with suppression of immune system.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>WBC ($\times 10^3/ul$)</th>
<th>EO ($\times 10^3/ul$)</th>
<th>MONO ($\times 10^3/ul$)</th>
<th>LYMPH ($\times 10^3/ul$)</th>
<th>NEUT ($\times 10^3/ul$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-Ve)</td>
<td>4.7± 0.3c</td>
<td>0.055± 0.0a</td>
<td>0.56± 0.0c</td>
<td>2.55± 0.0c</td>
<td>1.90± 0.06c</td>
</tr>
<tr>
<td>Control (+Ve)</td>
<td>11.0± 0.9a</td>
<td>0.01± 0.0a</td>
<td>0.13± 0.0a</td>
<td>1.05± 0.0a</td>
<td>0.75± 0.05a</td>
</tr>
<tr>
<td>Olive Oil (5%)</td>
<td>7.0± 0.6a</td>
<td>0.10± 0.0a</td>
<td>0.89± 0.0a</td>
<td>4.47± 0.0a</td>
<td>2.75± 0.04a</td>
</tr>
<tr>
<td>Fig (10%)</td>
<td>8.1± 0.7b</td>
<td>0.05± 0.0b</td>
<td>1.16± 0.0b</td>
<td>4.25± 0.0b</td>
<td>3.02± 0.62b</td>
</tr>
<tr>
<td>Date (10%)</td>
<td>7.3± 0.01b</td>
<td>0.10± 0.0b</td>
<td>0.98± 0.0b</td>
<td>5.30± 0.0b</td>
<td>3.40± 0.23b</td>
</tr>
<tr>
<td>Fig (10%)+Olive Oil (5%)</td>
<td>6.8 ± 0.8b</td>
<td>0.04 ± 0.0b</td>
<td>0.96 ± 0.0b</td>
<td>4.545 ± 0.0b</td>
<td>3.25 ± 0.34b</td>
</tr>
<tr>
<td>Date (10%)+Olive Oil (5%)</td>
<td>7.2± 0.2b</td>
<td>0.09± 0.0b</td>
<td>1.01± 0.0b</td>
<td>5.24± 0.0b</td>
<td>3.18± 0.03b</td>
</tr>
<tr>
<td>Fig(10%)+Date(10%)</td>
<td>7.4± 0.3b</td>
<td>0.03± 0.0b</td>
<td>1.04± 0.0b</td>
<td>5.82± 0.0b</td>
<td>2.87± 0.60b</td>
</tr>
<tr>
<td>Mixture(Fig10%+Date10%+Olive Oil5%)</td>
<td>6.9±0.6b</td>
<td>0.20±0.01a</td>
<td>1.58±0.07a</td>
<td>7.95±0.75a</td>
<td>7.35±0.45a</td>
</tr>
</tbody>
</table>

*Values are expressed as means ±SE.
*Values at the same column with different letters are significantly different at P<0.05.

WBC=White blood cell, EO=Eosinophil ,MONO=Monocyte ,LYMPH=Lymphocyte ,NEUT=Neutrophils.
Table (7): Effect of olive oil, dried fig and date on serum IgG and IgM in rats with suppression of immune system.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>IgG(g/L)</th>
<th>IgM(g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-Ve)</td>
<td></td>
<td>458.9 ±11.3<sup>d</sup></td>
<td>41.2± 3.2<sup>a</sup></td>
</tr>
<tr>
<td>Control (+Ve)</td>
<td></td>
<td>354.5 ±24.7<sup>e</sup></td>
<td>19.3 ±1.3<sup>f</sup></td>
</tr>
<tr>
<td>Olive Oil (5%)</td>
<td></td>
<td>538.4 ±6.1<sup>c</sup></td>
<td>58.4 ±1.8<sup>c</sup></td>
</tr>
<tr>
<td>Fig (10%)</td>
<td></td>
<td>532.9 ±15.2<sup>c</sup></td>
<td>58.0 ±0.9<sup>c</sup></td>
</tr>
<tr>
<td>Date (10%)</td>
<td></td>
<td>482.6 ±4.0<sup>c</sup><sup>c</sup></td>
<td>49.1 ±1.6<sup>d</sup></td>
</tr>
<tr>
<td>Fig (10%)+Olive Oil (5%)</td>
<td></td>
<td>690.7 ±21.2<sup>b</sup></td>
<td>73.5 ±0.6<sup>b</sup></td>
</tr>
<tr>
<td>Date (10%)+Olive Oil(5%)</td>
<td></td>
<td>638.3 ±31.2<sup>b</sup></td>
<td>70.1 ±0.8<sup>b</sup></td>
</tr>
<tr>
<td>Fig(10%)+Date(10%)</td>
<td></td>
<td>644.9± 12.7<sup>b</sup></td>
<td>74.0 ±1.2<sup>b</sup></td>
</tr>
<tr>
<td>Mixture(Fig10%+ Date10% +Olive Oil5%)</td>
<td></td>
<td>749.0 ±16.4<sup>a</sup></td>
<td>81.4 ±1.8<sup>a</sup></td>
</tr>
</tbody>
</table>

Values are expressed as means ±SE.

Values at the same column with different letters are significant at P<0.05.

IgG = Immune globulin G, IgM = Immune globulin M.
Photo (1): Spleen of rat from negative group
Photo (2): Spleen of rat from positive group
Photo (3): Spleen of rat from group fed on (olive oil 5%).
Photo (4): Spleen of rat from group fed on (dried fig 10%).
Photo (5): Spleen of rat from group fed on (date 10%).
Photo (6): Spleen of rat from group fed on (olive oil 5% and dried fig).
Hoda S. Ibrahim, Naeem M. Rabeh, Hanan M. El-Ghandour and Shafika M. Sabry

Photo(7): Spleen of rat from group fed on (olive oil 5% and date 10%).

Photo(8): Spleen of rat from group fed on (dried fig 10% and date 10%).

Photo(9): Spleen of rat from group fed on mixture of (olive oil 5%, dried fig 10% and date 10%).
References

Abbas, A. (2005):

Date Palm Tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. Front. Plant Sci. 8:845.

161

Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 107: 1636-1641.

Bokhari N. and Perveen K. (2012):

Calder, P. (2003):
N-3polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38:343–352.

Hoda S. Ibrahim, Naeem M. Rabeh, Hanan M. El-Ghandour and Shafika M. Sabry

The effects of olive oil upon rat serum lipid levels and
lymphocyte functions are due to oleic acid. Ann NutrMetab

Kasdallah-Grissa A.; Nakbi A.; Koubaa N.; El-Fazaâ S.; Gharbi
Dietary virgin olive oil protects against lipid peroxidation and
improves antioxidant status in the liver of rats chronically

Antidotal impact of extra virgin olive oil against genotoxicity,
cytotoxicity and immunotoxicity induced by hexavalent
chromium in rat. International Journal of Veterinary Science
and Medicine, 1(2): 65-73.

Screening of Some Crude Plant Extracts for Their Acaricidal
and Insecticidal Efficacied. J. Asia-Pacific Entomol. , 8 (1):93-
100.

Interactions between nutrition and immunity. In Nutrition and
Immunity. Pages 363–373.

Phenolic compounds in olive oil: antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 17: 76–84.

SPSS, (1986):
Statistical package for social science, version 18.
SPSS Inc., II. USA.

Immunotoxicity of phosphamidon following subchronic exposure in albino rats., Indian Journal of Experimental Biology, 44:316-320.

Tangney, C. and Rasmussen, H. (2013):

Hoda S.Ibrahim, Naeem M.Rabeh, Hanan M. El-Ghandour and Shafika M.Sabry

Vinson, J.(1999):

Visioli, F. (2004):

التأثير العلاجي للتين المجفف، التمر وزيت الزيتون على الجهاز المناعي في الفئران.

هدي سلامة ابراهيم، نعيم محمد رابح، حنان محمد الاغندور، شفيقة محمود صبري

قسم التغذية وعلوم الاطعمة – كلية الاقتصاد المنزلي - جامعة حلوان
مركز الاقليمى للاغذيه و الاعف و الاعمال و مركز البحوث الزراعية

الملخص العربي

أجريت هذه الدراسة لمعرفة تأثير التين المجفف، التمر وزيت الزيتون على القياسات الدموية والوظائف المناعية في الفئران. تم استخدام 45 من ذكور الفئران من سلالة الالبينو بتراوح وزنهم (120±5)جرام تم تقسيم كالتالي: المجموعة الأولى الرئيسيّة وهي المجموعة الضابطة السالبة وتغذى على الغذاء الأساسي فقط. المجموعة الثانية الرئيسيّة تغذى على الغذاء الأساسي وتم حقنها بجرعة من كرات الدم الحمراء للاغنام (6 فئران في كل مجموعة) لاحات تنص بالمناعة للفئران. ثم تم تقسيمهم إلى 8 مجاميع فرعية.المجموعة الأولى الفرعية تغذى على الغذاء الأساسي فقط وهي تتمثل المجموعة الضابطة الموجبة. المجامع الفرعية من 2-4 تغذى على الغذاء الأساسي مع إضافة كلا من زيت الزيتون بنسبة 5% والتين المجفف بنسبة 10% وتم تقسيمهم إلى 8 مجموعات الفرعية من 5-7 تغذى على الغذاء الأساسي ومن الفم 5% زيت الزيتون بنسبة 5% والتين المجفف بنسبة 10% والتمر بنسبة 10% خليط من التين المجفف، التمر، زيت الزيتون، التمر على التوالى. اما المجموعة الفرعية الثامنة تم تغذيتها على الخليط من زيت الزيتون 5%، التين المجفف 10%، التمر 10% لمدة 8 أسابيع. أظهرت نتائج التحليل الكيميائي ارتفاع مستويات التين المجفف، التمر وزيت الزيتون من الفيتامينات، الاملاح المعدنية والكربوهيدرات. يحتوي زيت الزيتون على كمية كبيرة من السعرات الدهون، الدهون، الدهون، الدهون، الدهون. يحتوي كلا من التين المجفف، التمر، زيت الزيتون على مركبات الفينولات و الفلافونات. تشير نتائج تحليل سيرم الفئران إلى أن المجموعة التي تغذى على التين المجفف 10%، التمر 10% وزيت الزيتون 5% أدي إلى حدوث ارتفاع معنوي في المقاييس المناعية (g/L) IgG, IgM (P<0.05) حيث كانت نسبة الضابطة الفعالة 81.4, 74.9, 47.9, 41.4. مقاييس الدعم قد ارتفعت بدرجة معنوية (P<0.05) في المجموعات التي تغذى على التين المجفف، التمر وزيت الزيتون منفردا أو كمخلوط. بينما انخفضت نسبة كرات الدم البيضاء على التين المجفف، التمر وزيت الزيتون منفردا أو كمخلوط.
بذلك المجاميع. علاوة على ذلك، كان هناك زيادة معنوية في كلا من معدل الزيادة في الوزن ، الطعام المتناول ومعدل كفاءة الطعام في المجاميع تحت الدراسة التي تم اختبارها مقارنة بال مجموعة الضابطة الموجبة. توصي الدراسة بتناول التين المجفف ، التمر وزيت الزيتون لتنشيط زيادة كفاءة الجهاز المناعي في الفئران المصابة بنقص المناعة.